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Abstract

Approximation formulae for both the maximum amplitude and the respective resonance frequencies of a linear

oscillator passing resonance are derived analytically. Starting from the exact solution for run-up or run-down with

constant acceleration, irrelevant terms are omitted. The analytically found results are compared to the known empirical

approximation formulae. Ó 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

During run-up or run-down, machines are subject to oscillating forces of increasing or decreasing fre-
quency. If resonances have to be passed, the maximum amplitudes are a major criterion for the design of
the machine.

In the case of non-stationary processes there is, in general, an interaction between the oscillating system
and its driving mechanism (Kononenko, 1969; Christ, 1966; Wauer, 1976; Markert et al., 1977, 1980;
Gasch, 1979). While approaching a resonance, the driving mechanism pumps energy into the oscillation,
whereas after the passage of the resonance, a part of the vibrational energy ¯ows back into the driving
mechanism. This leads to a lengthening of the resonance passage during run-up and to a shortening during
run-down (Markert, 1980). In the extreme, it may lead to stalling in the resonance during run-up. However,
if the driving mechanism is strong, the reaction of the oscillator to its driving mechanism may be neglected;
then, the excitation of the oscillating system is independent of its vibrational state and the excitation fre-
quency is prescribed by the driving mechanism.

While the resonance frequencies and the stationary oscillations of linear, time-invariant systems can be
easily calculated, the analytical calculation of the time or frequency response for non-stationary operation
is rather complicated and in practice rarely performed.
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Nevertheless, the maximum amplitude during the passage of resonance remains an important design
criterion for many machines. Therefore, several authors empirically developed approximate formulae for
the maximum resonance amplitudes of linear oscillators excited by non-stationary forces or unbalances
based on numerical integration data (Lewis, 1932; Katz, 1947; Zeller 1949; Fearn and Millsaps, 1967;
Markert, 1988; Irretier and Leul, 1993). An overview is given by Leul (1994). Although some of these
approximation formulae yield good approximations for the non-stationary resonance amplitude, they have
the restriction of not being mathematically proven. In this article, a di�erent approach is presented. Starting
from the exact solution for run-up or run-down through resonance with constant angular acceleration,
approximate formulae for both the maximum amplitude and the respective resonance frequency are derived
analytically.

2. Equation of motion

The general equation of motion

m�x�t� � b _x�t� � cx�t� � a0p�t� � a1 _p�t� � a2�p�t� � a3p
...�t� �1�

describes the forced motion of one-dimensional, time-invariant, linear oscillators for various types of ex-
citation mechanisms. The time-dependent state variable x�t� is governed by the system parameters, mass m,
damping b and sti�ness c on the one hand, and by the type of excitation on the other hand. Mostly, the
excitation is a linear combination of the excitation function p�t� and its derivatives in time, with constant
coe�cients a0, a1, a2 and a3. The state variable x�t� and the excitation function p�t� can have various
physical meanings, e.g., absolute or relative displacements, velocities, angles or forces. For illustration, the
simple system shown in Fig. 1 shall be considered (Witfeld, 1990).

A homogeneous cylinder with mass mw and radius r rolls on a cart which performs the prescribed motion
y�t�. The cylinder is connected to the cart by a spring c and a damper b.

The equation of motion for the angular displacement of the cylinder

3
2
mw �u�t� � b _u�t� � cu�t� � ÿmw

r
�y�t� �2�

shows the well-known inertia term as excitation and the agreement with the general equation (1) yields
x�t� � u�t� and p�t� � y�t� with parameters m � 3mw=2, a0 � a1 � a3 � 0 and a2 � ÿmw=r.

If alternatively, the absolute vibration xS�t� of the cylinder's center of gravity is chosen as the state
variable, the equation of motion results in

Fig. 1. Oscillating cylinder on a moving cart.
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3
2
mw�xS�t� � b _xS�t� � cxS�t� � cy�t� � b _y�t� � 1

2
mw�y�t�: �3�

In this case, on the right-hand side, not only the second, but also the zeroth and the ®rst time derivative of
the excitation function y�t� occur. Now the correspondence is x�t� � xS�t� and p�t� � y�t� with the excitation
parameters a0 � c, a1 � b, a2 � mw=2 and a3 � 0.

Finally, if one introduces the sum F �t� of the spring and the damper force ± the so-called foundation
force ± as the state variable, then the equation of motion

3
2
mw

�F � b _F � cF � ÿcmw�y ÿ bmwy
... �4�

contains also the third time derivative of the excitation function y�t� and the corresponding parameters are
a0 � a1 � 0, a2 � ÿcmw and a3 � ÿbmw.

It should be mentioned that dealing with aperiodic excitation functions, in particular with non-sta-
tionary run-up and run-down processes, it is in most cases favorable not to carry out the di�erentiation of
the excitation function explicitly, but to eliminate the di�erentiation during the calculations by partial
integration. In this way, unnecessary assumptions or even mistakes can be avoided that are sometimes
found in the literature, e.g., the assumption that during non-stationary operation the unbalance excitation
remains proportional to the square of the varying excitation frequency.

For further considerations, it is useful to make the excitation function p�t�, the state variable x�t� and the
parameters dimensionless by means of the undamped natural frequency

x0 �
����
c
m

r
�5�

and judiciously chosen reference quantities x̂ and p̂. With the dimensionless time

s � x0t �6�
and the resulting derivative rule

d . . .

dt
� x0

d . . .

ds
� x0�. . .��; �7�

as well as the non-dimensional excitation function P �s� � p�t�=p̂ and state variable X �s� � x�t�=x̂, the
general equation of motion under consideration

X
���s� � 2DX

� �s� � X �s� � A0P �s� � A1P
� �s� � A2P

���s� � A3 P
����s� �8�

contains only a few system inherent parameters, which are the damping ratio

D � b
2
������
cm
p �9�

and the excitation coe�cients

A0 � p̂
cx̂

a0; A1 � x0

p̂
cx̂

a1; A2 � x2
0

p̂
cx̂

a2; A3 � x3
0

p̂
cx̂

a3: �10�

3. Eigenvalues and harmonic excitation

In both stationary and non-stationary operations, the behavior of the system is primarily characterized
by the two eigenvalues

k1 � ÿD� i
��������������
1ÿ D2
p

and k2 � ÿDÿ i
��������������
1ÿ D2
p

; �11�
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which are complex conjugate for damping coe�cients jDj < 1.
If the excitation is harmonic in time with the excitation frequency X � gx0,

P �s� � cos�gs� b�; �12�
after transient vibrations have decayed, the remaining oscillations are of the form:

Xp�s� � V �g� cos gs� � bÿ d�g��: �13�
This oscillation is characterized by the ampli®cation factor:

V �g� �
�������������������������������������������������������������
�A0 ÿ g2A2�2 � g2�A1 ÿ g2A3�2

�1ÿ g2�2 � �2Dg�2

s
; �14�

and the phase angle which is determined by

sin d�g� � 2Dg�A0 ÿ g2A2� ÿ g�A1 ÿ g2A3��1ÿ g2�
V �g���1ÿ g2�2 � �2Dg�2� ; �15�

cos d�g� � �A0 ÿ g2A2��1ÿ g2� � 2Dg2�A1 ÿ g2A3�
V �g���1ÿ g2�2 � �2Dg�2� : �16�

These real functions are combined in the system's complex transfer function:

H�g� � V �g�eÿid�g� � �A0 ÿ g2A2� � ig�A1 ÿ g2A3�
�1ÿ g2� � i2Dg

; �17�

which depends on the excitation frequency g, but not on the time s.

4. Run-up or run-down with constant acceleration

Exact solutions are known for run-up or run-down processes with constant angular acceleration. Older
examinations of P�oschl (1933), Weidenhammer (1958), as well as Goloskokow and Filippow (1971) on
oscillators excited by force or unbalance were the basis for a general study by Markert and Pf�utzner (1981)
which encompasses all possible excitation mechanisms simultaneously.

During run-up or run-down with constant angular acceleration u
�� � a, the excitation has constant

amplitude,

P �s� � cos u�s�: �18�
Starting from the initial values g0 and b, the angular frequency of the excitation,

u
� �s� � X�t�

x0

� as� g0; �19�

increases or decreases linearly and the phase angle,

u�s� � a
2
s2 � g0s� b; �20�

changes quadratically with time s.
The non-stationary system response X �s� can be packed into the form

X �s� � jQ�s�j cos u�s�� ÿ w�s�� �21�
comparable to Eq. (13) resulting from stationary excitation. But contrary to the transfer function H�s� for
stationary excitation, the complex amplitude function,
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Q�s� � jQ�s�jeÿiw�s�; �22�
is time-dependent in the non-stationary case. Otherwise, jQ�s�j and w�s� describe the non-stationary os-
cillations analogously as V and d describe the stationary oscillations.

The complex amplitude function (for D 6� 1),

Q�s� � B1w�v1� � B2w�v2� � E1u
� �s�

n
� E0

o
� C1ev2

10
ÿv2

1

n
� C2ev2

20
ÿv2

2

o
; �23�

is described by the so-called error function (Abramowitz and Stegun, 1970)

w�u� � eÿu2

1

�
� 2i���

p
p

Z u

0

eu�2 du�
�

�24�

and depends on the two complex times:

v1�s� � ÿ 1� i

2
���
a
p asf � g0 � ik1g; v10 � v1�0�; �25�

v2�s� � signa
1� i

2
���
a
p asf � g0 � ik2g; v20 � v2�0�: �26�

The constants

B1 � 1ÿ i

4
��������������
1ÿ D2
p

���
p
a

r
�A0 � k1A1 � k2

1A2 � k3
1A3�;

B2 � signa�1ÿ i�
4
��������������
1ÿ D2
p

���
p
a

r
�A0 � k2A1 � k2

2A2 � k3
2A3�;

E1 � iA3;

E0 � A2 ÿ 2DA3;

C1 � �k2X0 ÿ X
�

0�eÿib

k2 ÿ k1

ÿ B1w�v10� � A1 � �ig� k1�A2 � �iaÿ g2 � igk1 � k2
1�A3

k2 ÿ k1

;

C2 � �k1X0 ÿ X
�

0�eÿib

k1 ÿ k2

ÿ B2w�v20� � A1 � �ig� k2�A2 � �iaÿ g2 � igk2 � k2
2�A3

k1 ÿ k2

�27�

contain the system parameters on the one hand and the initial conditions X0 � X �0� and X
�

0 � X
� �0� on the

other hand.
As an example, a run-down of the oscillator described by Eq. (2), excited by an unbalance, is shown in

Fig. 2. A high initial frequency of excitation g0 � 10 was chosen, so that possible transient oscillations
would have faded before the image border at u

� � 2 is reached. The plot clearly shows the di�erence of the
envelope function jQ�s�j of the non-stationary oscillations and the stationary resonance curve V �g�, as well
as the three main characteristics of the non-stationary passage of a resonance:

(1) In non-stationary operations, the maximum amplitude jQjmax is always smaller than in stationary
resonance operations. The faster the resonance is passed, the smaller is the non-stationary resonance
amplitude.

(2) The maximum amplitude jQjmax of the oscillations does not occur at the moment when the exciting
frequency _u�t� and the natural frequency x0 coincide, but later at the frequency gR. Thus, the maximum
amplitude shifts towards higher frequencies during run-up and towards lower frequencies during run-down.
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(3) After passing the resonance, a low-frequency oscillation of the amplitude occurs, which can be in-
terpreted as the superposition of the two parts of the oscillation: free oscillations with the natural fre-
quency, initiated during the passage of the resonance, and forced oscillations with variable excitation
frequency.

The exact equation (23) can also be used approximately for systems with slowly varying natural fre-
quency x�t�. For this purpose, instead of the actual angular acceleration a, an e�ective acceleration aeff is
used, calculated as the di�erence between the actual acceleration and the rate of change of the natural
frequency (Leul, 1994):

aeff � aÿ 1

x2
0

dx�t�
dt

: �28�

The analytical solution (23) applies to any damping ratios D 6� 1. For the critical case of D � 1 with
double eigenvalue k1 � k2 � ÿ1, there is also an analytical solution (Markert, 1982) which resembles so-
lution (23) in its structure. However, the question of the maximum amplitude does not arise with such a
high damping.

The shown solution method can also be applied to linear multi-degree-of-freedom systems and continua
by modal decomposition into a corresponding number of one-degree-of-freedom systems.

Fig. 2. Run-down of an oscillator excited by unbalance.
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5. The error function

In the solution formula (23) for the non-stationary run-up or run-down, the so-called error function (24)
occurs with the complex arguments v1 and v2. These complex variables change linearly with time, and
therefore, they can be interpreted as complex times. Because of the ambiguity of the square root

���
a
p

, there
are two possible de®nitions for each v1 and v2. Contrary to former publications (Markert, 1980; Markert
and Pf�utzner, 1981), the sign convention was chosen with regard to the later amplitude estimation in such a
way that only one term dominates in the solution. In Fig. 3, the range of the complex times corresponding
to this de®nition is sketched. These move through the complex plane along 45° lines. At the moment of the
passage of the resonance, the imaginary part of v1�s� is negative, while v2�s� has always a positive imaginary
part if u

�
P 0.

Analyzing the contour plot of the error function (Fig. 4), it becomes apparent that jw�v2�j is always much
smaller than jw�v1�j and is therefore negligible for an estimation of the non-stationary resonance amplitude.

The error function satis®es the di�erential equation:

w0�v� � ÿ2vw�v� � 2i���
p
p : �29�

Fig. 3. Paths of the complex variables v1�s� and v2�s�: (a) during run-up and (b) during run-down.

Fig. 4. Contour lines of the error function (Abramowitz and Stegun, 1970).
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For numerical calculations, there exist power series expansions, asymptotic expansions and also ap-
proximation equations (Markert, 1982). The continued fraction,

w�u� � i���
p
p 1

uÿ
1=2

uÿ
1

uÿ
3=2

uÿ
2

uÿ � � �
� �

; �30�

which is valid for arguments u with positive imaginary parts, Imfug > 0, is particularly useful for the
numerical evaluation. The three relations,

w�ÿ�u� � �w�u�; �31�
w�ÿu� � 2eÿu2 ÿ w�u�; �32�
w��u� � 2eÿ�u2 ÿ �w�u�; �33�

in which bars mark complex conjugate values, allow the transformation of the argument from one quadrant
to any other and thereby into the domain where the continued fraction (30) is valid.

6. Approximations for the passage through resonance

According to Eq. (23), the complex, time-dependent amplitude function Q�s� consists of four additive
parts.

The term

S4�s� � C1ev2
10
ÿv2

1 � C2ev2
20
ÿv2

2 �34�
describes free oscillations which normally have decayed before the resonance zone is reached and thus does
not contribute to the resonance amplitude. Therefore, this term can be neglected for approximating the
non-stationary oscillations within the resonance area.

The term

S3�s� � E1u
� �s� � E0 � A2 � A3�iu� �s� ÿ 2D� �35�

only occurs if the equation of motion includes the second or third derivative of the excitation function. In
all cases, it contributes only a small part to the resonance amplitude jQjmax. It is constant for A3 � 0 and it
changes only slightly in time for A3 6� 0. Therefore, S3�s� can be replaced by a constant within the resonance
area and can be neglected for the calculation of the non-stationary resonance frequency.

The term

S2�s� � B2w�v2� �36�
comes to resonance if iu

� �s� gets close to the second eigenvalue k2, which implies that the absolute value of

iu
� ÿ k2 � D� i�u� �

��������������
1ÿ D2
p

� becomes small. For positive excitation frequencies u
�
P 0, S2 remains small

and can be neglected as well.
The remaining term

S1�s� � B1w�v1� �37�
is the dominating part of the total solution and characterizes the passage of the resonance as well as the
subsequent oscillations of the amplitude. It reaches resonance after the dimensionless excitation frequency
u
� �s� passes the value 1.

Among the four terms (34)±(37), only S1�s� and S3�s� contribute noticeably to the resonance curve Q�s�,
S1�s� being the dominating part. Accordingly, a good approximation for the non-stationary passage of
resonances is
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Q�s� � B1w�v1� � A2

n
� A3�iu� �s� ÿ 2D�

o
: �38�

Fig. 5 illustrates this for the oscillator with unbalance excitation in Eq. (2). In the resonance area, the
di�erences between the exact solutions and their approximations are very small, in the present numerical
example less than 4%.

Even if the approximation (38) is already considerably simpli®ed in comparison with the exact solution
Q�s�, it is still inconvenient to evaluate because of the complex-valued error function w�v1�. To evaluate
w�v1�, one either has to consult a comprehensive handbook of mathematical tables (Abramowitz and
Stegun, 1970), or use a computer program. The computation becomes much easier if the error function
w�v1� is approximated with a continued fraction. To apply the continued fraction according to Eq. (30), the
argument v1 has to be transformed by using the symmetry relations (31)±(33), so that its imaginary part is
positive. Depending on the number of terms used in the continued fraction, di�erent approximations for
the error function result:

w�v1� � w1�v1� � 2eÿv2
1 � i���

p
p 1

v1

; �39�

w�v1� � w2�v1� � 2eÿv2
1 � i���

p
p 2v1

2v2
1 ÿ 1

; �40�

w�v1� � w3�v1� � 2eÿv2
1 � i���

p
p 2�v2

1 ÿ 1�
v1�2v2

1 ÿ 3� : �41�

Of course, these approximations only hold if the imaginary part of v1 is negative, i.e., for run-ups �a > 0� if
u
�
>

��������������
1ÿ D2
p

� D and for run-downs �a < 0� if u
�
<

��������������
1ÿ D2
p

ÿ D, so in all cases after the stationary
resonance frequency and therefore always within the region of the non-stationary resonance frequency. The
resulting approximations for the complex amplitude function Q�s� are of di�erent accuracy,

Q1�s� � B1 2eÿv2
1

�
� i���

p
p 1

v1

�
� A2

n
� A3�iu� ÿ 2D�

o
;

Q2�s� � B1 2eÿv2
1

�
� i���

p
p 2v1

2v2
1 ÿ 1

�
� A2

n
� A3�iu� ÿ 2D�

o
; �42�

Q3�s� � B1 2eÿv2
1

�
� i���

p
p 2�v2

1 ÿ 1�
v1�2v2

1 ÿ 3�
�
� A2

n
� A3�iu� ÿ 2D�

o
:

Fig. 5. Absolute values of the complex amplitude Q�s� (Ð) and its approximation S1�s� � S3�s� (± ± ±) for a run-up �a > 0� and a run-

down �a < 0�.
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Fig. 6 compares the exact solution to the di�erent approximations. After the maximum jQjmax of the
amplitude, already the most simple approximation Q1�s�, which involves only one term of the continued
fraction, comes close to the exact solution. However, estimating the corresponding non-stationary reso-
nance frequency gR requires the approximation Q2�s� in most cases.

7. Estimation of the non-stationary resonance amplitude and frequency

The preceding investigations showed that the most important characteristics of the non-stationary be-
havior are formed by the part S1�s� of the complete solution Q�s�. All other terms are small, and if S3�s�
constitutes a part of the amplitude function at all, it does not change signi®cantly with the excitation
frequency u

�
. Therefore, the excitation frequency u

� � gR at which the maximum amplitude jQjmax occurs
can be determined from the condition:

d

ds
fQ�s� �Q�s�g � d

ds
fB1w�v1� �B1 �w�v1�g � 0: �43�

Omitting the real constant B1
�B1, applying the relations w�v1� � �w�ÿ�v1� and w0�ÿ�v1� � ÿ�w0�v1�, and con-

sidering the identity z� �z � 2Refzg, one obtains

T �s� � d

ds
fw�v1��w�v1�g � d

ds
fw�v1�w�ÿ�v1�g � w0�v1��w�v1�v�1 � �w0�v1�w�v1��v�1

� 2Refw0�v1��w�v1�v�1g � 0: �44�
Finally, after eliminating the derivative w0�v1� by Eq. (29), the condition for the non-stationary reso-

nance frequency gR is given by

T �s� � 2Re
���
a
p �1
�

� i��w�v1� i���
p
p
�

ÿ v1w�v1�
��
� 0: �45�

Fig. 7 shows T �s� as a function of the excitation frequency u
�

in the undamped case D � 0. The zeros of the
function T �s� yield not only the non-stationary resonance frequency gR corresponding to the amplitude
maximum jQjmax, but all other excitation frequencies at which the amplitude function jQ�s�j exhibits relative
maxima and minima.

Fig. 6. Absolute values of the complex amplitude function Q�s� and its approximations Q1�s�, Q2�s� and Q3�s� for a run-up and a run-

down.
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Condition (45) can be solved numerically for arbitrary values of damping. However, various numerical
examples show that the damping D, as long as it remains small, does not in¯uence the location gR of the
non-stationary resonance maximum considerably. Furthermore, jQ�s�j is rather ¯at in the resonance zone
even without damping, so that it is not necessary to calculate gR exactly for estimating jQjmax. Therefore,
damping is taken into account for estimating the non-stationary resonance amplitude jQjmax, whereas the
non-stationary resonance frequency gR is calculated without damping.

In general, the function T depends on the three parameters a, u
�

and D. For the given values of angular
acceleration and damping, the zeros of T characterize the excitation frequencies corresponding to the
maxima and minima of the amplitude jQj. In the case of zero damping D � 0, the number of independent
variables in T can be reduced to one by using the new variable,

d � �u
� ÿ 1�2
2jaj ; �46�

which is real and positive, yielding

T �s� � 2
������
jaj

p
Re �w

 (
ÿ �1� i�

���������������
d signa

2

r !
�i
"
ÿ 1�

������������
signa

p

r
� 2i

���
d
2

r
w

 
ÿ �1� i�

���������������
d signa

2

r !#)
� 0:

�47�
Eq. (47) is valid for both run-up (a > 0) and run-down (a < 0). It has an in®nite number of solutions dn

(n � 0, 1, 2, . . .), from which the corresponding excitation frequencies can be calculated according to

u
�

n � 1� signa
������������
2dnjaj

p
: �48�

The numerical evaluation shows that the values of d are the same for run-up and run-down with equal
absolute values of angular acceleration. For both processes, the resonance shift is the same in this ap-
proximation. Approximate values for dn can be found by using the truncated continued fraction (30),

dn � p
4
�4nÿ 1�: �49�

Odd values of n belong to the maxima and even values to the minima of jQ�s�j. In Table 1, the exact
solutions of Eq. (47) in comparison with the approximate values according to Eq. (49) are listed.

The solution d1 � 2:3272 describes the location of the maximum amplitude, jQjmax, which occurs when
the excitation frequency u

�
coincides with the non-stationary resonance frequency,

gR � 1� 2:157signa
������
jaj

p
: �50�

Fig. 7. Determination of the zeros of the function T �s�.
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Eq. (50) is an analytically justi®ed approximation formula for the excitation frequency gR corresponding
to the non-stationary resonance maximum jQjmax, which provides satisfactory results even for D 6� 0. The
non-stationary resonance maximum jQjmax can be calculated by substituting gR into one of the approxi-
mation formulae for the amplitude Q�s�. The numerical computation of the resulting formula is still in-
convenient and, therefore, a more simpli®ed relation for the maximum amplitude is determined by further
manipulations and approximations.

For small damping, the imaginary part of the eigenvalue k1 may be replaced by the value 1:

Imfk1g �
��������������
1ÿ D2
p

� 1 �51�
yielding

v1R � ÿ 1� i

2
���
a
p signa

������������
2d1jaj

ph
ÿ iD

i
; �52�

v2
1R � i d1signa

�
ÿ D2

2a

�
� D

�������
2d1

jaj

s
; �53�

which simpli®es the two terms in Eq. (42) to

1ÿ i

4
��������������
1ÿ D2
p

���
p
a

r
i���

p
p

v1R

� ÿ signa
������������
2d1jaj

p � iD
2 2d1jaj � D2� � ; �54�

1ÿ i

4
��������������
1ÿ D2
p

���
p
a

r
2eÿv2

1R �
�����
p
2a

r
e
ÿD

����
2d1
jaj

q
ÿi p

4
�d1sign aÿD2

2a

ÿ �
: �55�

Considering the approximation

eÿi p
4
�d1sign a� � � ÿ1������������

signa
p ; �56�

the ®nal approximation for the non-stationary resonance amplitude is

jQjmax � A2

������� � i 1
�
� signa

������������
2d1jaj

p �
A3

�
ÿ signa A0� � iA1 ÿ A2 ÿ iA3�

��������
p

2jaj
r

e
iD

2

2aÿD

����
2d1
jaj

q� �24
�

������������
2d1jaj

p � iD signa
2 2d1jaj � D2� �

35������: �57�

This approximation is valid for arbitrary angular accelerations and damping ratios D. It also provides
correct results for the limiting cases a! 0 or D! 0. For example, for pure force excitation (A0 � 1), the
limit a! 0 leads to the well-known approximation formula:

Table 1

Zeroes of Eq. (47)

n dn (exact) dn Eq. (49)

1 2.3272 2.36

2 5.508 5.50

3 8.634 8.64

4 11.78 11.78

5 14.92 14.92
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jQjmax �
1

2D
; �58�

and the limit D! 0 yields the good result:

jQjmax �
1

0:6732
������jajp : �59�

If the angular acceleration is not very small, a� 5D2, Eq. (57) can be further simpli®ed by developing
the absolute value of the exponential function into a power series, neglecting the higher-order terms and the
small imaginary parts in the last two expressions:

jQjmax � A2

������ � i 1
�
� signa

������������
2d1jaj

p �
A3

�
ÿ signa A0� � iA1 ÿ A2 ÿ iA3�

�
��������
p

2jaj
r

1

 "
ÿ D

�������
2d1

jaj

s
� D2 d1

jaj

!
� 1

2
������������
2d1jaj

p #�����: �60�

Being valid for arbitrary excitation mechanisms, this formula simpli®es immensely for a speci®c mechanism
of excitation.

For example, in the special case of force excitation (A0 � 1), one obtains

jQjmax �
��������
p

2jaj
r

1

 
ÿ D

�������
2d1

jaj

s
� D2 d1

jaj

!
� 1

2
������������
2d1jaj

p �61�

and by reordering the terms ®nally,

jQjmax �
1

0:673
������jajp ÿ 2:70

D
jaj � 2:92

D2�������
jaj3

q : �62�

For the special case of excitation by the damper (A1 � 1), the same approximation results as for force
excitation.

If the system is excited by the movement of the foundation (A0 � 1 and A1 � 2D), which is relevant for
vibration absorbers, one obtains just the additional factor

����������������
1� 4D2
p

.
In the discussed simplest approximation, these three special cases have the same maximum amplitudes

during run-up and run-down.
However, for unbalance excitation (A2 � ÿ1), Eq. (60) yields

jQjmax �
��������
p

2jaj
r

1

 
ÿ D

�������
2d1

jaj

s
� D2 d1

jaj

!
� 1

2
������������
2d1jaj

p � signa; �63�

which contains the additional term signa, describing the di�erence in the maximum amplitudes during run-
up and run-down by the value 2.

8. Comparison to empirical formulae

In the literature, several approximate formulae can be found for the maximum amplitude jQjmax and the
corresponding excitation frequency gR during non-stationary passage through resonances. The base of
most of these formulae are extensive numerical examinations and subsequent parameter ®t for a given
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equation structure. In the following, an overview of these formulae is given. For comparison, the formulae
from the literature have been rearranged and converted into the same notation as used in this article.

Usually, the approximations for the non-stationary resonance frequency from the literature do not dis-
tinguish between force and unbalance excitation since remarkable di�erences only arise for large values of
the angular acceleration jaj. The formula for the non-stationary resonance frequency gR by Fearn and
Millsaps (1967),

gR � 1� 2:15 signa
������
jaj

p
; �64�

has the same structure as the analytically based formula (50). Katz (1947) provides the approximation
formula

gR � 1� signa
2:178

������jajp
1� 0:56D=

������jajp � 0:0784D2=jaj ; �65�

which also takes damping into account. As mentioned above, the in¯uence of damping is very weak: even
for a damping ratio of 5%, the non-stationary resonance frequency gR di�ers less than 4% from the un-
damped case. In a former publication of Markert (1988), the formula

gR �
��������������
1ÿ D2
p

� signa
����������������������������������
2�pÿ 1�jaj � D2

p
�66�

was given, which in the undamped case (D � 0) yields

gR � 1� 2:07 signa
������
jaj

p
: �67�

Leul (1994) gave the formula

gR � 1� signa
2:222

������jajp
1� 0:556D=

������jajp : �68�

The analytically based approximation (50),

gR � 1� 2:157 signa
������
jaj

p
; �69�

con®rms the empirical estimations and shows that the deviation of the non-stationary resonance frequency
from the stationary one is approximately proportional to

������jajp
. The formulae di�er from each other slightly

in the numerical factors; the values vary from 2.06 to 2.22, while the analytical approximation has the
factor 2.157 (Table 2). The e�ect of these di�erences is small, as can be seen in Fig. 8.

In the literature, force and unbalance excitation are distinguished from each other for the estimation of
the non-stationary resonance amplitude jQjmax.

For force excited systems, Lewis (1932) gives

jQjmax �
1

0:68
������jajp ÿ 0:353signa; �70�

Fearn and Millsaps (1967),

jQjmax �
1

0:68
������jajp ÿ 0:25signa� 0:025

������
jaj

p
; �71�

Irretier and Leul (1993),

jQjmax �
1

0:76
������jajp � 2Dÿ 0:51

����
D
p ������jaj4
p� �

ÿ signa 0:01
������jajp � 0:07

����
D
p ������jaj4
p� � ; �72�
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Markert (1988),

jQjmax �
1

2D� ����������jaj=2
p � 1

0:71
������jajp � 2D

; �73�

and Zeller (1949),

jQjmax �
1

2D
��������������
1ÿ D2
p 1

h
ÿ eÿD

���������
2p=jaj
p i

� 1

0:80
������jajp ÿ Dp

2jaj : �74�

The corresponding analytically developed approximation formula reduces to

jQjmax �
1

0:673
������jajp ÿ 2:70

D
jaj � 2:92

D2�������
jaj3

q : �75�

Fig. 9 contrasts the di�erent approximations to the numerically calculated exact curve.
For unbalance excited oscillators, the empirically found approximation formulae for the non-stationary

resonance maximum are given by Dorning (1959) as,

jQjmax �
1

0:694ÿ 0:016signa� � ������jajp ; �76�

Fernlund (1963),

Table 2

The factors of the term
���
a
p

in di�erent approximation formulae

Author Factor in jQjmax force

excitation

Factor in jQjmax unbalance

excitation

Factor in gR

Analytical 0.6732 0.6732 2.157

Fearn and Millsaps (1967) 0.68 2.15

Katz (1947) 2.178

Markert (1988) 0.71 2.07

Irretier and Leul (1993) 0.75/0.77 0.75/0.77 2.222

Lewis (1932) 0.68

Zeller (1949) 0.80

Dorning (1959) 0.68/0.71

Fernlund (1963) 0.71

Hirano et al. (1968) 0.66

Fig. 8. Non-stationary resonance frequency gR.
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jQjmax �
1

0:71
������jajp ; �77�

Hirano et al. (1968),

jQjmax �
1

0:66
������jajp eÿ0:9396jajÿ0:379D0:7
h i

; �78�

and Leul (1994),

jQjmax �
1� 0:165

������jajp � 0:815signa
������jajp

0:76
������jajp � 2Dÿ 0:51

����
D
p ������jaj4
p� �

ÿ signa 0:01
������jajp � 0:07

����
D
p ������jaj4
p� � : �79�

The corresponding analytically based approximation is

jQjmax �
1

0:673
������jajp ÿ 2:70

D
jaj � 2:92

D2�������
jaj3

q � signa: �80�

Fig. 10 contrasts the di�erent approximations to the numerically calculated exact curve.

Fig. 9. Maximum amplitude jQjmax of an oscillator with force excitation.

Fig. 10. Maximum amplitude jQjmax with unbalance excitation.
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Even if the individual approximations look quite di�erent at ®rst sight, they nevertheless have an es-
sential characteristic in common. For weak damping, the non-stationary resonance amplitude jQjmax is
inversely proportional to

������jajp
. The factors of

������jajp
are in the range between 0.66 and 0.80 and the devi-

ations from the exact value are mostly smaller than 10% (Table 2). The di�erent approximation formulae
di�er from each other noticeably only in the higher-order terms, so that di�erences become apparent only
for extreme parameter values.

9. Conclusion

The analytically based formulae for the non-stationary resonance amplitude and frequency encompass
many possible excitation mechanisms. The formulae have a simple structure and are easy to evaluate. The
deviations from the exact values are mostly smaller than 10%.
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