INTERNATIONAL JOURNAL OF

SOLIDS and
STRUCTURES

www.elsevier.com/locate/ijsolstr

PERGAMON International Journal of Solids and Structures 38 (2001) 1975-1992

Analytically based estimation of the maximum amplitude
during passage through resonance

R. Markert *, M. Seidler

Institute of Mechanics, AG II, Darmstadt University of Technology, Hochschulstrasse 1, 64289 Darmstadt, Germany
Received 1 August 1999; in revised form 7 December 1999

Abstract

Approximation formulae for both the maximum amplitude and the respective resonance frequencies of a linear
oscillator passing resonance are derived analytically. Starting from the exact solution for run-up or run-down with
constant acceleration, irrelevant terms are omitted. The analytically found results are compared to the known empirical
approximation formulae. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

During run-up or run-down, machines are subject to oscillating forces of increasing or decreasing fre-
quency. If resonances have to be passed, the maximum amplitudes are a major criterion for the design of
the machine.

In the case of non-stationary processes there is, in general, an interaction between the oscillating system
and its driving mechanism (Kononenko, 1969; Christ, 1966; Wauer, 1976; Markert et al., 1977, 1980;
Gasch, 1979). While approaching a resonance, the driving mechanism pumps energy into the oscillation,
whereas after the passage of the resonance, a part of the vibrational energy flows back into the driving
mechanism. This leads to a lengthening of the resonance passage during run-up and to a shortening during
run-down (Markert, 1980). In the extreme, it may lead to stalling in the resonance during run-up. However,
if the driving mechanism is strong, the reaction of the oscillator to its driving mechanism may be neglected;
then, the excitation of the oscillating system is independent of its vibrational state and the excitation fre-
quency is prescribed by the driving mechanism.

While the resonance frequencies and the stationary oscillations of linear, time-invariant systems can be
easily calculated, the analytical calculation of the time or frequency response for non-stationary operation
is rather complicated and in practice rarely performed.
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Nevertheless, the maximum amplitude during the passage of resonance remains an important design
criterion for many machines. Therefore, several authors empirically developed approximate formulae for
the maximum resonance amplitudes of linear oscillators excited by non-stationary forces or unbalances
based on numerical integration data (Lewis, 1932; Katz, 1947; Zeller 1949; Fearn and Millsaps, 1967;
Markert, 1988; Irretier and Leul, 1993). An overview is given by Leul (1994). Although some of these
approximation formulae yield good approximations for the non-stationary resonance amplitude, they have
the restriction of not being mathematically proven. In this article, a different approach is presented. Starting
from the exact solution for run-up or run-down through resonance with constant angular acceleration,
approximate formulae for both the maximum amplitude and the respective resonance frequency are derived
analytically.

2. Equation of motion

The general equation of motion
mx(t) + bx(t) + cx(t) = aop(t) + a1p(t) + arp(t) + a3 p(¢) (1)

describes the forced motion of one-dimensional, time-invariant, linear oscillators for various types of ex-
citation mechanisms. The time-dependent state variable x(¢) is governed by the system parameters, mass 7,
damping b and stiffness ¢ on the one hand, and by the type of excitation on the other hand. Mostly, the
excitation is a linear combination of the excitation function p(¢) and its derivatives in time, with constant
coefficients ao, a;, a, and as;. The state variable x(¢) and the excitation function p(¢) can have various
physical meanings, e.g., absolute or relative displacements, velocities, angles or forces. For illustration, the
simple system shown in Fig. 1 shall be considered (Witfeld, 1990).

A homogeneous cylinder with mass m,, and radius r rolls on a cart which performs the prescribed motion
y(¢). The cylinder is connected to the cart by a spring ¢ and a damper b.

The equation of motion for the angular displacement of the cylinder

I p(0) + bo(e) + co(t) = = Z3(0) @)

shows the well-known inertia term as excitation and the agreement with the general equation (1) yields
x(t) = o(¢) and p(¢) = y(¢z) with parameters m = 3m,, /2, ay = a; = a3 = 0 and a; = —m,, /7.

If alternatively, the absolute vibration xs(¢) of the cylinder’s center of gravity is chosen as the state
variable, the equation of motion results in

e

Fig. 1. Oscillating cylinder on a moving cart.
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3m,s(1) + bxs(t) + exs(t) = cy(t) + by(t) + Im, (7). (3)

In this case, on the right-hand side, not only the second, but also the zeroth and the first time derivative of
the excitation function y(¢) occur. Now the correspondence is x(¢) = x5(¢) and p(¢) = y(¢) with the excitation
parameters ayp = ¢, a; = b, a = m,,/2 and a3 = 0.

Finally, if one introduces the sum F(¢) of the spring and the damper force — the so-called foundation
force — as the state variable, then the equation of motion

%mwF + bF + cF = —emy,y — bm,,y 4)

contains also the third time derivative of the excitation function y(¢) and the corresponding parameters are
apo=a; =0, ay = —cm,, and a3 = —bm,,.

It should be mentioned that dealing with aperiodic excitation functions, in particular with non-sta-
tionary run-up and run-down processes, it is in most cases favorable not to carry out the differentiation of
the excitation function explicitly, but to eliminate the differentiation during the calculations by partial
integration. In this way, unnecessary assumptions or even mistakes can be avoided that are sometimes
found in the literature, e.g., the assumption that during non-stationary operation the unbalance excitation
remains proportional to the square of the varying excitation frequency.

For further considerations, it is useful to make the excitation function p(¢), the state variable x(¢) and the
parameters dimensionless by means of the undamped natural frequency

wy = \/% (5)

and judiciously chosen reference quantities X and p. With the dimensionless time

T = ot (6)
and the resulting derivative rule

d... d... o

7(1),‘ = )y 7(11_ = 600(. . ) ; (7)

as well as the non-dimensional excitation function P(t) = p(¢)/p and state variable X (1) = x(¢)/%, the
general equation of motion under consideration

X(t) 4+ 2DX (1) + X (1) = AoP(1) + A, P(1) + A,P(7) + A3 P (1) (8)
contains only a few system inherent parameters, which are the damping ratio
b
D= 9
2+/cm )
and the excitation coefficients
Aozgﬂoa Ay :wogﬂl, Azzwégﬂza Aszwég%- (10)
cx cx cx

3. Eigenvalues and harmonic excitation

In both stationary and non-stationary operations, the behavior of the system is primarily characterized
by the two eigenvalues

Jy=-D+iV1—D? and i, = —D —iV1 - D?, (11)
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which are complex conjugate for damping coefficients |D| < 1.
If the excitation is harmonic in time with the excitation frequency Q = nw,,

P(t) =cos(nt + p), (12)
after transient vibrations have decayed, the remaining oscillations are of the form:
Xp(t) = V() cos [yt + f — d(n)]. (13)
This oscillation is characterized by the amplification factor:
Vin) = \/(A0 SUES) e _2172/13)2’ (14)
(1 =n*)"+ (2Dn)

and the phase angle which is determined by

Sin 3(y) = 2Dn(Ag — n°Az) — n(4y — n?4s)(1 — n?) , (15)

V(n)(1 =) + (2Dn)’]

(Ao — *A2)(1 — ?) 4+ 2Dn* (4, — n°A3)

cosd(n) = (16)
V(m(1 =)’ + (2Dn)’]
These real functions are combined in the system’s complex transfer function:
N Ay — 1124y +in(4, — A
H(n) = V(e = Ao TR i ) (1)

(1 —y*) 412Dy ’

which depends on the excitation frequency #, but not on the time 7.

4. Run-up or run-down with constant acceleration

Exact solutions are known for run-up or run-down processes with constant angular acceleration. Older
examinations of Poschl (1933), Weidenhammer (1958), as well as Goloskokow and Filippow (1971) on
oscillators excited by force or unbalance were the basis for a general study by Markert and Pfiitzner (1981)
which encompasses all possible excitation mechanisms simultaneously.

During run-up or run-down with constant angular acceleration ¢ = «, the excitation has constant
amplitude,

P(t) = cos (7). (18)
Starting from the initial values 5, and f, the angular frequency of the excitation,
o Q t
o0 =20 _oe y i, (19)
)

increases or decreases linearly and the phase angle,
(1) =57 + ot + B, (20)

changes quadratically with time 7.
The non-stationary system response X (t) can be packed into the form

X(7) = |0(v)| cos [p(r) — ¥(7)] (1)

comparable to Eq. (13) resulting from stationary excitation. But contrary to the transfer function H(z) for
stationary excitation, the complex amplitude function,
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0(v) = 0(v)[e ™", (22)

is time-dependent in the non-stationary case. Otherwise, |Q(t)| and (1) describe the non-stationary os-
cillations analogously as " and ¢ describe the stationary oscillations.
The complex amplitude function (for D # 1),

Q(’E) = B]W(Ul) + Bzw(vz) + {Elgoo(’l?) + Eo} + {Clevfo_l’% + Czevgo_"‘%}7 (23)
is described by the so-called error function (Abramowitz and Stegun, 1970)

wiu) = e <1+ 7 ueﬂ”du*) (24)

and depends on the two complex times:

U1 (’E) =

\/— {“T +1o+iki}, vio =11(0), (25)

02(7) = signa \f{mw i1}, va = 12(0). (26)

The constants

B = 4\/1% (Ao Ay + 224+ 34y),
B, — signo(l —1i)

WI1-D
E) = ids,

Ey = A> — 2DA;,

\[(AO+;2A1+;A2+A3A)

Xy — Xo)e 4 A — A+ 22
(A2X0 0)e ~ Biw(on) + 1+ (i + A4y + (i — n? + inky + 27)45

C =
)Vz — ;»1 /L2 — /Ll

Xy — Xo)e Ay + (in+ o)A + (i — n? + inds + 2)4
(AiXo — Xo)e — Bow(vm) + 1+ (i + A2)As + (i — * + inds + 45)4;

G = p p
)\,] %) A — Lo

contain the system parameters on the one hand and the initial conditions X, = X(0) and X, = X(0) on the
other hand.

As an example, a run-down of the oscillator described by Eq. (2), excited by an unbalance, is shown in
Fig. 2. A high initial frequency of excitation Mo = 10 was chosen, so that possible transient oscillations
would have faded before the image border at ¢ = 2 is reached. The plot clearly shows the difference of the
envelope function |Q(7)| of the non-stationary oscillations and the stationary resonance curve ¥ (), as well
as the three main characteristics of the non-stationary passage of a resonance:

(1) In non-stationary operations, the maximum amplitude |Q|,,, is always smaller than in stationary
resonance operations. The faster the resonance is passed, the smaller is the non-stationary resonance
amplitude.

(2) The maximum amplitude |Q|,,,, of the oscillations does not occur at the moment when the exciting
frequency ¢(¢) and the natural frequency w, coincide, but later at the frequency ng. Thus, the maximum
amplitude shifts towards higher frequencies during run-up and towards lower frequencies during run-down.
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Fig. 2. Run-down of an oscillator excited by unbalance.

(3) After passing the resonance, a low-frequency oscillation of the amplitude occurs, which can be in-
terpreted as the superposition of the two parts of the oscillation: free oscillations with the natural fre-
quency, initiated during the passage of the resonance, and forced oscillations with variable excitation
frequency.

The exact equation (23) can also be used approximately for systems with slowly varying natural fre-
quency o(t). For this purpose, instead of the actual angular acceleration o, an effective acceleration o is
used, calculated as the difference between the actual acceleration and the rate of change of the natural
frequency (Leul, 1994):

1 dof)

Oleff = O —
oy dr

(28)

The analytical solution (23) applies to any damping ratios D # 1. For the critical case of D = 1 with
double eigenvalue 1, = 4, = —1, there is also an analytical solution (Markert, 1982) which resembles so-
lution (23) in its structure. However, the question of the maximum amplitude does not arise with such a
high damping.

The shown solution method can also be applied to linear multi-degree-of-freedom systems and continua
by modal decomposition into a corresponding number of one-degree-of-freedom systems.
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5. The error function

In the solution formula (23) for the non-stationary run-up or run-down, the so-called error function (24)
occurs with the complex arguments v; and v,. These complex variables change linearly with time, and
therefore, they can be interpreted as complex times. Because of the ambiguity of the square root /o, there
are two possible definitions for each v; and v,. Contrary to former publications (Markert, 1980; Markert
and Pfitzner, 1981), the sign convention was chosen with regard to the later amplitude estimation in such a
way that only one term dominates in the solution. In Fig. 3, the range of the complex times corresponding
to this definition is sketched. These move through the complex plane along 45° lines. At the moment of the
passage of the resonance, the imaginary part of v, (7) is negative, while v,(7) has always a positive imaginary
part if ¢ > 0.

Analyzing the contour plot of the error function (Fig. 4), it becomes apparent that |w(v,)| is always much
smaller than |w(v;)| and is therefore negligible for an estimation of the non-stationary resonance amplitude.

The error function satisfies the differential equation:

2i

w(v) = =2ow(v) + N3 (29)

a) Im{v} /< b) X Im{v}

/] Re{v} N\ Refo}

MR MR

i (T) vi(7) N

Fig. 3. Paths of the complex variables v;(t) and v,(7): (a) during run-up and (b) during run-down.

Im{v}

w

4 3 o 4 1 2 3 4

Fig. 4. Contour lines of the error function (Abramowitz and Stegun, 1970).
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For numerical calculations, there exist power series expansions, asymptotic expansions and also ap-
proximation equations (Markert, 1982). The continued fraction,

W(u)l(ul—i/—zul—i/—zuz—)’ (30)

which is valid for arguments u with positive imaginary parts, Im{u} > 0, is particularly useful for the
numerical evaluation. The three relations,

w(—it) = w(u), (31)
w(—u) =2e™" —w(u), (32)
w(it) = 2¢ — w(u), (33)

in which bars mark complex conjugate values, allow the transformation of the argument from one quadrant
to any other and thereby into the domain where the continued fraction (30) is valid.

6. Approximations for the passage through resonance

According to Eq. (23), the complex, time-dependent amplitude function Q(t) consists of four additive
parts.
The term

Si(t) = Creto ™ + Cretn 73 (34)

describes free oscillations which normally have decayed before the resonance zone is reached and thus does
not contribute to the resonance amplitude. Therefore, this term can be neglected for approximating the
non-stationary oscillations within the resonance area.

The term

S3(t) = E (1) + Eo = Ay + As[ip(t) — 2D (35)

only occurs if the equation of motion includes the second or third derivative of the excitation function. In
all cases, it contributes only a small part to the resonance amplitude |Q|, ... It is constant for 4; = 0 and it
changes only slightly in time for 4; # 0. Therefore, S;(t) can be replaced by a constant within the resonance
area and can be neglected for the calculation of the non-stationary resonance frequency.

The term

S5(1) = Bow(vs) (36)
comes to resonance if i¢(t) gets close to the second eigenvalue /,, which implies that the absolute value of
ip—lr=D+ 1((}3 + V1 — D?) becomes small. For positive excitation frequencies ¢ >0, S, remains small

and can be neglected as well.
The remaining term

S1 (’C) = BIW(Ul) (37)

is the dominating part of the total solution and characterizes the passage of the resonance as well as the
subsequent oscillations of the amplitude. It reaches resonance after the dimensionless excitation frequency
(1) passes the value 1.

Among the four terms (34)-(37), only S)(z) and S;(z) contribute noticeably to the resonance curve Q(z),
Si(t) being the dominating part. Accordingly, a good approximation for the non-stationary passage of
resonances is
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Fig. 5. Absolute values of the complex amplitude Q(t) (—) and its approximation S (z) + S3(t) (— ——) for a run-up (« > 0) and a run-
down (x < 0).

0(7) ~ Biw(v) + {Az + A3[if(x) — 2D]}. (38)

Fig. 5 illustrates this for the oscillator with unbalance excitation in Eq. (2). In the resonance area, the
differences between the exact solutions and their approximations are very small, in the present numerical
example less than 4%.

Even if the approximation (38) is already considerably simplified in comparison with the exact solution
0O(1), it is still inconvenient to evaluate because of the complex-valued error function w(v;). To evaluate
w(vy), one either has to consult a comprehensive handbook of mathematical tables (Abramowitz and
Stegun, 1970), or use a computer program. The computation becomes much easier if the error function
w(vy) is approximated with a continued fraction. To apply the continued fraction according to Eq. (30), the
argument v, has to be transformed by using the symmetry relations (31)—(33), so that its imaginary part is
positive. Depending on the number of terms used in the continued fraction, different approximations for
the error function result:

w(v) = wi(o) =2e + NG (39)
2 1 21)1
~ =2 U 4+ — 4
W(U]) Wz(U]) € + \/E 20% ] 5 ( O)
. >
w(vy) ~ ws(v;) = 274 —&-L 20 = 1) (41)

Of course, these approximations only hold if the imaginary part of v; is negative, i.e., for run-ups (o > 0) if
@ >V1—D?+D and for run-downs (x < 0) if ¢ < /1 —D?>— D, so in all cases after the stationary
resonance frequency and therefore always within the region of the non-stationary resonance frequency. The
resulting approximations for the complex amplitude function Q(z) are of different accuracy,

Oi(z) = B, {2e‘”? +;E Ull } + {Az +As(ip — 2D)},
0)(1) = B, {2e-l’% + ﬁ ZU?Ui 1 } + {42+ 4306 - 20) }, (42)
0s(1) = B, {2e”? + ﬁ %} + {Az + As(ip — ZD)}.
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Fig. 6. Absolute values of the complex amplitude function Q(t) and its approximations Q;(t), Q»(t) and Qs(7) for a run-up and a run-
down.

Fig. 6 compares the exact solution to the different approximations. After the maximum |Q|,,, of the
amplitude, already the most simple approximation Q,(t), which involves only one term of the continued
fraction, comes close to the exact solution. However, estimating the corresponding non-stationary reso-

nance frequency 5y requires the approximation Q,(t) in most cases.

7. Estimation of the non-stationary resonance amplitude and frequency

The preceding investigations showed that the most important characteristics of the non-stationary be-
havior are formed by the part S;(7) of the complete solution Q(t). All other terms are small, and if S;(7)
constitutes a part of the amplitude function at all, it does not change significantly with the excitation
frequency ¢. Therefore, the excitation frequency ¢ = 5z at which the maximum amplitude |0 s OCCULS
can be determined from the condition:

{000} ~ S {Bw(e)Bi(n)} =0 @3)

Omitting the real constant BB, applying the relations w(v;) = w(—2;) and w'(—o,) = —# (1), and con-
sidering the identity z + z = 2Re{z}, one obtains

T(E) = - o) (01)} = < o (7)) = W (o) (00) s + 700w

= 2Re{w (v )w(vy)v;} = 0. (44)

Finally, after eliminating the derivative w/(v,) by Eq. (29), the condition for the non-stationary reso-
nance frequency 7y is given by

T(’E) = 2Re{\/&(l + 1)1/_1/(1)1) |:L — U]W(Ul):| } =0. (45)
NG

Fig. 7 shows T'(t) as a function of the excitation frequency ¢ in the undamped case D = 0. The zeros of the

function T'(t) yield not only the non-stationary resonance frequency 5y corresponding to the amplitude

maximum |Q| .., but all other excitation frequencies at which the amplitude function |Q(7)| exhibits relative

maxima and minima.
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Fig. 7. Determination of the zeros of the function 7'(t

Condition (45) can be solved numerically for arbitrary values of damping. However, various numerical
examples show that the damping D, as long as it remains small, does not influence the location 5y of the
non-stationary resonance maximum considerably. Furthermore, |Q(7)| is rather flat in the resonance zone
even without damping, so that it is not necessary to calculate y exactly for estimating |Q|,,.,. Therefore,
damping is taken into account for estimating the non-stationary resonance amplitude |Q| whereas the
non-stationary resonance frequency 5y is calculated without damping.

In general, the function T depends on the three parameters «, ¢ and D. For the given values of angular
acceleration and damping, the zeros of T characterize the excitation frequencies corresponding to the
maxima and minima of the amplitude |Q|. In the case of zero damping D = 0, the number of independent
variables in T can be reduced to one by using the new variable,

s_o—1’
el 7

max?

(40)

which is real and positive, yielding

r):2mRe{w<—(l 1)\/@>l —1\/5—1@%2\/( 55‘5““)”:0.

(47)

Eq. (47) is valid for both run-up (o > 0) and run-down (« < 0). It has an infinite number of solutions d,
(n=0,1,2,...), from which the corresponding excitation frequencies can be calculated according to

¢, = 1 +signay/29,|o. (48)

The numerical evaluation shows that the values of ¢ are the same for run-up and run-down with equal
absolute values of angular acceleration. For both processes, the resonance shift is the same in this ap-
proximation. Approximate values for J, can be found by using the truncated continued fraction (30),

T
511 ~—
4
Odd values of n belong to the maxima and even values to the minima of |Q(t)|. In Table 1, the exact
solutions of Eq. (47) in comparison with the approximate values according to Eq. (49) are listed.
The solution ¢; = 2.3272 describes the location of the maximum amplitude, |Q| which occurs when
the excitation frequency ¢ coincides with the non-stationary resonance frequency,

nr = 1 +2.157sign o/« (50)

(4n —1). (49)

max?
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Table 1
Zeroes of Eq. (47)
n 0, (exact) o, Eq. (49)
1 2.3272 2.36
2 5.508 5.50
3 8.634 8.64
4 11.78 11.78
5 14.92 14.92

Eq. (50) is an analytically justified approximation formula for the excitation frequency yy corresponding
to the non-stationary resonance maximum |Q|,.., which provides satisfactory results even for D # 0. The
non-stationary resonance maximum |Q|,... can be calculated by substituting # into one of the approxi-
mation formulae for the amplitude Q(t). The numerical computation of the resulting formula is still in-
convenient and, therefore, a more simplified relation for the maximum amplitude is determined by further
manipulations and approximations.

For small damping, the imaginary part of the eigenvalue 4; may be replaced by the value 1:

m{/)} =vI-D*~1 (51)
yielding
L
VIR A —2—;&1 {signou/251|oc| - iD}7 (52)
vlp & i s noc—D—2 +D 201 (53)
R AT 18I 24 |ot]’

which simplifies the two terms in Eq. (42) to

1 -1 moi signoy/20;|of +iD (54)
41— D2\ o y/muir 2(26, || + D) 7

1—1 T 5 T —D\/z—i:—i(ﬂntélsign ot—’,)—z)
e VR A el Jo] 4 B/ 55
4\/1—1)2\£e " ey (55)
Considering the approximation
e i(Grosigna) ! , (56)
\/signo
the final approximation for the non-stationary resonance amplitude is
s < (i
[ S (Az + i(l + signay/26, |oc\)A3) —signo(dy + 4, — Ay — id3) me " i
\/201|o| +iDsigna
. 57
08+ D) (57)

This approximation is valid for arbitrary angular accelerations and damping ratios D. It also provides
correct results for the limiting cases o« — 0 or D — 0. For example, for pure force excitation (4o = 1), the
limit & — 0 leads to the well-known approximation formula:
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1

|Q|max %57 (58)
and the limit D — 0 yields the good result:
1
|Olnax (59)

~ 0.6732+/|o]

If the angular acceleration is not very small, o > 5D?, Eq. (57) can be further simplified by developing
the absolute value of the exponential function into a power series, neglecting the higher-order terms and the
small imaginary parts in the last two expressions:

(Az + 1(1 + Sigl’lO(\/ 25] |O(|>A‘;) — signot(AO + iA] — Az — 1A;)
L(l - D 2_51+D2ﬁ

1
+—|
2|l ot |o<|> 2\/251|a|] ‘

Being valid for arbitrary excitation mechanisms, this formula simplifies immensely for a specific mechanism
of excitation.
For example, in the special case of force excitation (4y = 1), one obtains

|Olmax ~
~
max

(60)

Y 251 2(31 1
Ol ~ (1 =Dy [~y D 2 ) 61)
2 2|«|< o P ) T (

and by reordering the terms finally,

2
2702 4200 P (62)

1
06730 I af

For the special case of excitation by the damper (4; = 1), the same approximation results as for force
excitation.

If the system is excited by the movement of the foundation (49 = 1 and 4, = 2D), which is relevant for
vibration absorbers, one obtains just the additional factor v/1 + 4D2.

In the discussed simplest approximation, these three special cases have the same maximum amplitudes
during run-up and run-down.

However, for unbalance excitation (4, = —1), Eq. (60) yields

|l max

T 251 ) (31 1 .
Olvax ® 1 /5= 1 = Dy/—+ D" — | + ———=+signu, 63)
2 2o o o | 24/26,]4] (

which contains the additional term sign o, describing the difference in the maximum amplitudes during run-
up and run-down by the value 2.

8. Comparison to empirical formulae

In the literature, several approximate formulae can be found for the maximum amplitude |Q|,,,, and the

corresponding excitation frequency ni during non-stationary passage through resonances. The base of
most of these formulae are extensive numerical examinations and subsequent parameter fit for a given
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equation structure. In the following, an overview of these formulae is given. For comparison, the formulae
from the literature have been rearranged and converted into the same notation as used in this article.

Usually, the approximations for the non-stationary resonance frequency from the literature do not dis-
tinguish between force and unbalance excitation since remarkable differences only arise for large values of
the angular acceleration |o|. The formula for the non-stationary resonance frequency ni by Fearn and
Millsaps (1967),

g = 1+ 2.15signay/|a, (64)

has the same structure as the analytically based formula (50). Katz (1947) provides the approximation
formula

2.178+/]o] (65)
1+0.56D/+/]a] +0.0784D2/|a|’

ng = 1 +signa

which also takes damping into account. As mentioned above, the influence of damping is very weak: even
for a damping ratio of 5%, the non-stationary resonance frequency ny differs less than 4% from the un-
damped case. In a former publication of Markert (1988), the formula

g = V1 —D? +signay/2(n — 1)|a| + D? (66)

was given, which in the undamped case (D = 0) yields

ng = 1+ 2.07signay/|a. (67)
Leul (1994) gave the formula
g = 1+ signa " +20'.252526\l§|/7\|/m. (68)
The analytically based approximation (50),
ng = 1 +2.157signay/|o], (69)

confirms the empirical estimations and shows that the deviation of the non-stationary resonance frequency
from the stationary one is approximately proportional to \/m . The formulae differ from each other slightly
in the numerical factors; the values vary from 2.06 to 2.22, while the analytical approximation has the
factor 2.157 (Table 2). The effect of these differences is small, as can be seen in Fig. 8.

In the literature, force and unbalance excitation are distinguished from each other for the estimation of
the non-stationary resonance amplitude |Q|,....

For force excited systems, Lewis (1932) gives

10| s = —0.353signa, (70)

1
0.68+/]o

Fearn and Millsaps (1967),

Ol max — 0.25signo + 0.025+/ 1, (71)

1
0.68+/]o

Irretier and Leul (1993),
1

|Q|max = )
(0.76/1a +2D — 0.51VD/[a] ) ~ signa(0.01+/[a] + 0.07v/D</1a])
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Table 2
The factors of the term /o in different approximation formulae
Author Factor in |Q|,,,, force Factor in |Q|,,,, unbalance Factor in 7y
excitation excitation
Analytical 0.6732 0.6732 2.157
Fearn and Millsaps (1967) 0.68 2.15
Katz (1947) 2.178
Markert (1988) 0.71 2.07
Irretier and Leul (1993) 0.75/0.77 0.75/0.77 2222
Lewis (1932) 0.68
Zeller (1949) 0.80
Dorning (1959) 0.68/0.71
Fernlund (1963) 0.71
Hirano et al. (1968) 0.66
R
Ag =1
D =

exact
_____ analytical approx.
—.—.— Irretier/Leul
——— Markert (former)
-——- Katz

———= Fearn/Millsaps

0

—01 —0.05 0 0.05 01 a

Fig. 8. Non-stationary resonance frequency 7.

Markert (1988),

1 1
Ol =55 +]e/2 " 0.71y/]e] + 2D

and Zeller (1949),
1 1 Dn
= |l—e?V¥WMl o~ 7 74
Dl 2DV1 = D? { } 0.80\/]a] 2l 4
The corresponding analytically developed approximation formula reduces to
D D?

1
N 2702 4290 2 (75)
0.673\/ |a‘ |OC| |O(|’;

Fig. 9 contrasts the different approximations to the numerically calculated exact curve.
For unbalance excited oscillators, the empirically found approximation formulae for the non-stationary
resonance maximum are given by Dorning (1959) as,

1
|Q|max - (0694 — 0016Slgn(x)\/Ma

Fernlund (1963),

|Q|max

(76)
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|Qlmax exact
I \ - analytical approx.
\ —-—-— Zeller
——— Irretier/Leul
-——- Fearn/Millsaps D=0
—————— Lewis D=0

—01 —0.05 0 0.05 01 a

Fig. 9. Maximum amplitude |Q| .. of an oscillator with force excitation.

max

[¢

1
max m’

Hirano et al. (1968),

|Q|max -

b

1 [670_9396“‘70.379[)0_7}
0.66+/]c|

and Leul (1994),

ol = 1 +0.165+/]of + 0.815sign oy /]or|
" (0761l + 2D — 0.51VDY/To ) ~ signa(0.01y/Io] + 0.07VDY/Io )

The corresponding analytically based approximation is

D D?
0— + 2.92——+signo.

1
Olpay ® —————=—2.7
@l 0.673/|o] ot o

Fig. 10 contrasts the different approximations to the numerically calculated exact curve.

exact

----- analytical approx.
——-— Hirano

——— Irretier/Leul
-——= Fernlund D=0

—01 —0.05 0 0.05 01 a

Fig. 10. Maximum amplitude |Q| . with unbalance excitation.

max

(77)

(78)

(79)
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Even if the individual approximations look quite different at first sight, they nevertheless have an es-
sential characteristic in common. For weak damping, the non-stationary resonance amplitude |Q|,,, is
inversely proportional to \/|_oT| . The factors of m are in the range between 0.66 and 0.80 and the devi-
ations from the exact value are mostly smaller than 10% (Table 2). The different approximation formulae
differ from each other noticeably only in the higher-order terms, so that differences become apparent only
for extreme parameter values.

9. Conclusion

The analytically based formulae for the non-stationary resonance amplitude and frequency encompass
many possible excitation mechanisms. The formulae have a simple structure and are easy to evaluate. The
deviations from the exact values are mostly smaller than 10%.
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